Call for Abstract
Scientific Program
11th World Congress on Chemistry, will be organized around the theme “”
World Chemistry 2020 is comprised of 21 tracks and 0 sessions designed to offer comprehensive sessions that address current issues in World Chemistry 2020.
Submit your abstract to any of the mentioned tracks. All related abstracts are accepted.
Register now for the conference by choosing an appropriate package suitable to you.
Medicinal compounds are organic in nature and are classified into small organic molecules and biologics. In many cases Inorganic and organometallic compounds are also useful as drugs. The most common practice of medicinal chemistry, is aiming to discover and develop new therapeutic agents by involving synthetic organic chemistry and computational chemistry in a close knit combination with chemical biology, enzymology and structural biology. The interdisciplinary team-work at the interface between chemistry, biology and medicine is required for Drug research. The discipline of Medicinal chemistry is both science and an art. The former offers humankind its best hopes for improving the living quality and the latter still challenges its researchers with the need for both intuition and experience to discover new drugs
Industrial Chemistry is the branch of chemistry which applies physical and chemical processes of conversion of raw materials into products that are of beneficial for mankind. Industrial chemistry is the manufacturing art of the transformation of matter into useful materials.
- Hess law
- Fertiliser
- Petrochemicals
- Chemicals
The discipline that focuses on the quality aspects of medicines and aims to assure fitness for purpose of medicinal products is Pharmaceutical chemistry. It is the study of drugs, and also involves its development in various stages such as drug discovery, delivery, absorption, metabolism, and more. Pharmaceutical chemistry usually has its work in a lab which has elements of medical analysis, pharmacology, pharmacokinetics, and pharmacodynamics. The development of this field will enable us to contribute to life-saving remedies and enhance the speed of delivery of new medications. The other branches of study that are important for understanding the effects that drugs have on the body are pharmacokinetics, pharmacodynamics and drug metabolism
The area of clinical pathology, that is concerned with analysis of urine, blood (whole blood, serum, plasma), body fluids for screening, diagnosis and monitoring of different diseases. Clinical tests are taken to identify the changes when compared to the biological reference interval of human beings. A wide range of techniques like chemiluminescence, Immunoassays, radioimmunoassay, Biochemical methods like colorimetry, enzymatic reactions, spectrophotometry, nephelometry, electrophoresis, enzyme linked flourescence, Analytical chemistry methods like high performance liquid chromatography, atomic absorption, mass spectrometry, infrared spectrometry, etc. are used by Clinical pathologists and biochemists to detect and control diseases. Specialists in Forensic chemistry identify materials in a crime scene through a wide array of methods and using instruments such as Fourier transform infrared spectroscopy, thin layer chromatography, gas chromatography-mass spectrometry, high-performance liquid chromatography and atomic absorption spectroscopy. To preserve evidence and to determine which destructive methods will produce the best results, Forensic chemists prefer using non-destructive methods first. A set of standards are followed by Forensic chemists that have been proposed by various agencies and governing bodies, including the Scientific Working Group on the Analysis of Seized Drugs. Forensic chemists routinely check and verify their instruments, to ensure the accuracy of what they are reporting
The discipline that focuses on the mechanisms by which cells process, integrate, and act on information to create and propagate living organisms is Molecular Biology and Biochemistry. Chemical Biology deals with chemistry applied to biology. It concentrates in particular disciplines such as cell biology, genetics, epigenetics, genomics, molecular biology, biochemistry, biophysics, structural biology, and computational modelling. Both are fields that bring biologists and chemists together due to concern for the life and composition of the cells. The primary concerns of the biochemist are about the vast and complex array of chemical reactions occurring in living matter and the chemical composition of the cell
An important aspect of drug designing is to understand the principal component in the natural product that is having the therapeutic benefit. The important role that medicinal chemistry plays is in developing a drug with therapeutic benefits. The process of traditionally modifying a chemical molecule which has therapeutic value, to intervene a disease is done by Medicinal chemistry. Identification of a chemical molecule of potential, altering its chemical structure, synthesizing the organic molecule in the laboratory, and testing of its properties and biological activities are all included in the process. The market of pharmaceutical industry is driven by Medicinal chemistry. At present, the primary aim of drug designing is to design a drug for a known target and develop a molecule by completely understanding the active principle with therapeutic potential, which is then approved by the Food and Drug Administration (FDA). This process of designing a new molecule to the established target is done using Computer Assisted Drug Designing (CADD)
The study of neurochemicals that are generated by and that modulate the nervous system is Neurochemistry. The multidisciplinary science that is concerned with the study of the structure and function of the nervous system is Neuroscience. Oxytocin, serotonin, dopamine and other neurotransmitters and neurotransmitter-regulating substances are the Neurochemicals. It refers to the chemical processes that occur in the brain and nervous system. It is the chemistry that occurs in the human brain and the nerve cell, helps humans in communicating signals. The flourishing academic field that contributes to our understanding of molecular, cellular and medical neurobiology is Neurochemistry. It deals with the role of chemicals that build the nervous system, it explores the function of neurons and glial cells in health and disease, it reveals how degenerative processes are at work in the nervous system and it discovers aspects of cell metabolism and neurotransmission
In Organic Chemistry discipline, the scientific study is concentrated towards carbon compounds and other carbon-based compounds such as hydrocarbons and their derivatives. The rapidly growing scientific discipline that combines organic chemistry and biochemistry is bioorganic chemistry. The scientific study of the composition, structure, properties, preparation and the reactions involved comprises organic or inorganic chemistry. Organic chemistry is said to tackle stereochemistry, isomerization, photochemistry, hydrogenation, polymerization, and fermentation
Inorganic chemistry covers crystallography, atomic structure, electrochemistry, ceramics, chemical bonding, coordination of compounds and acid-base reactions. It is found that inorganic chemistry is the only discipline within chemistry that examines specifically the differences among all the different kinds of atoms. This characteristic of inorganic chemistry is applied in Medicinal Inorganic Chemistry which studies the significant and non-significant elements which can be used in the treatment and diagnosis of diseases
Advanced Physical Chemistry topics consist of different spectroscopic methods ranging from ultrafast and mass spectroscopy, nuclear magnetic and electron paramagnetic resonance, x-ray absorption and atomic force microscopy, also theoretical and computational tools. The gap between the theories and techniques of modern-day physics and chemical systems is filled by Physical chemistry. Physical and theoretical chemists work to unravel the phenomena that govern all aspects of the physical world by using advanced characterization and computational methods. Advanced characterization techniques is applied to a diverse range of topics – energy storage materials for electric vehicles, biologically relevant proteins to understand degenerative diseases, photo-induced molecular transformations and complex surface properties by Physical chemists. As to improve our understanding of all aspects of chemistry, right down to the nature of chemical bonding, Theoretical chemists work to establish quantum mechanical methods.
The analytical technique that measures the mass-to-charge ratio of ions is Mass Spectroscopy. Mass spectrometry used in the clinical laboratory focused on drugs of abuse confirmations, new-born screening, and steroid analysis. Almost all areas of laboratory medicine, is depended on mass spectrometry. Another laboratory technique used for separation if a mixture is Chromatography. Large amount of pure chemicals used to make medicines are prepared using chromatography
Among the broad fields of analytical and bioanalytical chemistry, the most vibrant and cutting-edge field that receives wide research interest is bioanalysis. The modern fields in Analytical & Bio analytical Chemistry are instrumental developments for analytical proteomics, imaging, development of miniaturized devices, sensors, chemometrics and sampling methods. Problems in pharmaceutical industries are solved by the application of bioanalytical techniques, making new innovations in biomedical field.
The sub-field of Chemistry, that deals with radioactivity, nuclear process and properties, is Nuclear Chemistry. The behaviour of objects and materials after being placed into a nuclear waste storage or disposal site is the most important area in Nuclear Chemistry. Nuclear Chemistry is applicable in the use of radioactive tracers within industry, radiotherapy in medical applications, science and the environment and the use of radiation to modify materials such as polymers.
Electrochemical methods are widely used in various branches of industry be it, the practical importance of electrochemical processes, role of the processes in living organisms, and the unique features of their experimental study have led to the formation of electrochemistry as an individualistic scientific discipline. The biological processes related to the functioning of biological membranes such as the detection of the visual image, the transmission of the nervous impulse and the assimilation and use of food energy are impossible without electrochemical links
The study of the synthesis, characterization and properties of polymer molecules or macromolecules is the sub-discipline of chemistry called Polymer chemistry. Other sub-disciplines of chemistry like analytical chemistry, organic chemistry and physical chemistry have the same principles and methods used for polymer chemistry. Polymer science or nanotechnology can be included as the broader fields of Polymer chemistry. According to their origin, polymers can be subdivided into biopolymers and synthetic polymers. The structural and functional materials that comprise most of the organic matter in organisms are Biopolymers. The structural materials shown in plastics, synthetic fibres, mechanical parts, paints, building materials, furniture, and adhesives are Synthetic polymers. They can be further divided into thermoplastic polymers and thermoset plastics. Almost all synthetic polymers are derived from petrochemicals
There is a major interest in areas like aquatic photochemistry, atmospheric particles, reactive surfaces, analytical methods, renewable feedstocks, development of new green chemistry curricula and outreach materials. Many Environment Institutes work closely to discover solutions to Earth's most pressing environmental problems by conducting transformative research. Chemical products and processes that reduce or eliminate the use of hazardous substances are designed, having the goal to eliminate pollution and to enhance efficiency, to save resources and energy, and to achieve sustainable development of chemistry and the chemical industry
The emerging science of objects that are intermediate in size between a few nanometres to less than 100 nanometres that can be fabricated by current photolithography is Nanoscience. Particularly interesting classes of nanostructures in chemistry includes colloids, polymer molecules, Bucky tubes, silicon Nano rods, compound semiconductor quantum dots and micelles. Chemists not so soon ago realized that chemistry is already playing a leading role in nanotechnology and that, it is the ultimate nanotechnology. New forms of matter are made by chemical synthesis with remarkable economy and safety, by joining atoms and groups of atoms together with bonds. Although Nano electronics gained initial interest in nanotechnology, the first new and potentially commercial technologies to emerge from revolutionary nanoscience seem, in fact, to be in materials science, produced from chemical processes. The invention and development of materials whose properties depend on nanoscale structure was contributed by Chemistry. Ultimately Chemistry and chemical engineering will be important in producing materials productively, economically, and in quantity
The discipline that takes care of the important role in expanding the nation’s food supply is Agricultural and food chemistry. Basic research or applied research and development are the two categories that shape this department. The one which understands the biological and chemical processes by which crops and livestock grow is Basic research. Applied research uses the knowledge gained from basic research to discover ways to improve the quality, quantity, and safety of agricultural products. Be it crop and animal production, food safety, quality, nutrition, processing, packaging, and utilization of materials, agricultural and food chemists delve into all aspects that help their common goal to produce sufficient nutritious food and feed to support the population in a sustainable way while being responsible towards our environment and ecosystem
Geochemistry and Marine Chemistry affects synthetic and geochemical procedures operating in wide ranges of study : the seas, the strong earth, polar ice sheets, lakes, shooting stars, the climate, marine life forms and the close planetary system. The research that deals with the chemical composition and chemical processes of the marine water bodies is Marine Chemistry. The study of physical aspects such as structure, processes and the composition of the earth is Geochemistry. In scientific research applications and industrial queries, informed decisions are taken by analyzing information buried in the liquids, gases, and mineral deposits of rocks. This helps petroleum industries as well as enables scientists to combine theories about the way the earth is changing.Analytical chemistry is an important basic chemical discipline whose knowledge is essential for biochemists. Toxicology, hydrology, and sedimentology are areas that are involved with environmental geochemistry.
The branch of Petrochemistry is among the six core industries in the world and plays a major role in influencing decision making for all the other important sections of the economy. Petroleum focuses on how crude oil and natural gas are transformed into raw materials and other useful products. It is the primary material for a multitude of chemical products, including pharmaceuticals, solvents, fertilizers, plastics, dyes, surfactants, fuels, and many others. Therefore many nations consider petroleum as an integral part of other industries & holds critical importance. Even though the trend towards Renewable and Alternative energy is building, it is still considered the global powerhouse. The petrochemical sector has embraced the sustainability challenge and has made substantial increases in production efficiency while steadily decreasing its energy input. A significant amount is contributed to the national GDP by Petrochemistry
As an artifact of the digital generation, today’s computer models reconstruct chemical processes by merging principals of classical & quantum physics. Computational Chemistry Laboratory, allows the computational chemist to perform a comprehensive series of molecular indices/properties calculations and data analysis. Supercomputers are used by Computational chemists to find solutions to problems & to generate simulations that reduce enormous amounts of data which is otherwise very time consuming. Other important instruments include electronic structure methods, quantitative structure–activity relationships, cheminformatics, full statistical analysis & molecular dynamics simulations. To integrate chemical theory and modelling with experimental observations computational chemists use large databases, mathematical algorithms & statistics. The discipline which influences numerous areas of technology is Chemical engineering. Chemical engineers have opportunities in pharmaceuticals, environmental engineering, electronic device fabrication and biotechnology. The role is to design processes to produce, transform and transport chemicals through full-scale production. When processes involve the chemical or physical transformation of matter, chemical engineers are essential.